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3.1 DESIGN USE OF THE MECHANISMS
SECTION

The design process involves intuition, invention, synthesis, and analysis. Although no
arbitrary rules can be given, the following design procedure is suggested:

1. Define the problem in terms of inputs, outputs, their time-displacement curves,
sequencing, and interlocks.

2. Select a suitable mechanism, either from experience or with the help of the several
available compilations of mechanisms, mechanical movements, and components
(Sec. 3.8).

3. To aid systematic selection consider the creation of mechanisms by the separation
of structure and function and, if necessary, modify the initial selection (Secs. 3.2
and 3.6).

4. Develop a first approximation to the mechanism proportions from known design
requirements, layouts, geometry, velocity and acceleration analysis, and path-curvature
considerations (Secs. 3.3 and 3.4).

5. Obtain a more precise dimensional synthesis, such as outlined in Sec. 3.5, possibly
with the aid of computer programs, charts, diagrams, tables, and atlases (Secs. 3.5,
3.6, 3.7, and 3.9).

6. Complete the design by the methods outlined in Sec. 3.6 and check end results.
Note that cams, power screws, and precision gearing are treated in Chaps. 14, 16,
and 21, respectively.

3.2 BASIC CONCEPTS

3.2.1 Kinematic Elements

Mechanisms are often studied as though made up of rigid-body members, or “links,”
connected to each other by rigid “kinematic elements” or “element pairs.” The nature
and arrangement of the kinematic links and elements determine the kinematic proper-
ties of the mechanism.

If two mating elements are in surface contact, they are said to form a “lower pair”;
element pairs with line or point contact form “higher pairs.” Three types of lower pairs
permit relative motion of one degree of freedom (f = 1), turning pairs, sliding pairs,
and screw pairs. These and examples of higher pairs are shown in Fig. 3.1. Examples
of element pairs whose relative motion possesses up to five degrees of freedom are
shown in Fig. 3.2.
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FIG. 3.1 Examples of kinematic-element pairs: lower pairs a, b, ¢, and higher pairs d and e. (a)
Turning or revolute pair. (b) Sliding or prismatic pair. (¢) Screw pair. (d) Roller in slot. (¢) Helical

gears at right angles.
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FIG. 3.2 Examples of elements pairs with f > 1. (@) Turn slide or cylindrical pair. (b) Ball joint or
spherical pair. (¢) Ball joint in cylindrical slide. (d) Ball between two planes. (Translational freedoms
are in mutually perpendicular directions. Rotational freedoms are about mutually perpendicular axes.)

2 <

A link is called “binary,” “ternary,” or “n-nary” according to the number of element
pairs connected to it, i.e., 2, 3, or n. A ternary link, pivoted as in Fig. 3.3a and b, is
often called a “rocker” or a “bell crank,” according to whether « is obtuse or acute.

A ternary link having three parallel turning-pair connections with coplanar axes,
one of which is fixed, is called a “lever” when used to overcome a weight or resistance
(Fig. 3.3¢, d, and e). A link without fixed elements is called a “floating link.”

{a)
1 Q b
Qutput ' b a
0 Py pe
b
o lnpuJ }lnput 1 Output Output Input
MA>t if a>b MA> M.A<I
MA<tif a<b
{c) td) {e)

FIG. 3.3 Links and levers. (a) Rocker (ternary link). (b) Bell crank (ternary link). (c) First-class lever.
(d) Second-class lever. (e) Third-class lever.
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3.4 MECHANICAL DESIGN FUNDAMENTALS

Mechanisms consisting of a chain of rigid links (one of which, the “frame,” is consid-
ered fixed) are said to be closed by “pair closure” if all element pairs are constrained by
material boundaries. All others, such as may involve springs or body forces for chain
closure, are said to be closed by means of “force closure.” In the latter, nonrigid ele-
ments may be included in the chain.

3.2.2 Degrees Of Freedom6,9,10,]3,94,111,154,242,368

Let F = degree of freedom of mechanism
[ = total number of links, including fixed link
J = total number of joints
f; = degree of freedom of relative motion between element pairs of ith joint

Then, in general,
J
F=Nl—j—-D+>f (3.1
i=1

where \ is an integer whose value is determined as follows:

N = 3: Plane mechanisms with turning pairs, or turning and sliding pairs; spatial
mechanisms with turning pairs only (motion on sphere); spatial mechanisms with rec-
tilinear sliding pairs only.

N = 6: Spatial mechanisms with lower pairs, the axes of which are nonparallel and
nonintersecting; note exceptions such as listed under A = 2 and A = 3. (See also Ref. 10.)

N = 2: Plane mechanisms with sliding pairs only; spatial mechanisms with “curved”
sliding pairs only (motion on a sphere); three-link coaxial screw mechanisms.

Although included under Eq. (3.1), the motions on a sphere are usually referred to
as special cases. For a comprehensive discussion and formulas including screw chains
and other combinations of elements, see Ref. 13. The freedom of a mechanism with
higher pairs should be determined from an equivalent lower-pair mechanism whenever
feasible (see Sec. 3.2).

Mechanism Characteristics Depending on Degree of Freedom Only. For plane
mechanisms with turning pairs only and one degree of freedom,

2j—3l+4=0 3.2)

except in special cases. Furthermore, if this equation is valid, then the following are
true:

1. The number of links is even.
2. The minimum number of binary links is four.

3. The maximum number of joints in a single link cannot exceed one-half the number
of links.

4. If one joint connects m links, the joint is counted as (m — 1)-fold.

In addition, for nondegenerate plane mechanisms with turning and sliding pairs and
one degree of freedom, the following are true:

1. If a link has only sliding elements, they cannot all be parallel.

2. Except for the three-link chain, binary links having sliding pairs only cannot, in
general, be directly connected.

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2006 The McGraw-Hill Companies. All rights reserved.
Any use is subject to the Terms of Use as given at the website.



KINEMATICS OF MECHANISMS

KINEMATICS OF MECHANISMS 3.5

3. No closed nonrigid loop can contain less than two turning pairs.

For plane mechanisms, having any combination of higher and/or lower pairs, and
with one degree of freedom, the following hold:

1. The number of links may be odd.

2. The maximum number of elements in a link may exceed one-half the number of
links, but an upper bound can be determined.!>*368

3. If a link has only higher-pair connections, it must possess at least three elements.

For constrained spatial mechanisms in which Eq. (3.1) applies with A = 6, the sum
of the degrees of freedom of all joints must add up to 7 whenever the number of links
is equal to the number of joints.

Special Cases. F can exceed the value predicted by Eq. (3.1) in certain special cases.
These occur, generally, when a sufficient number of links are parallel in plane motion
(Fig. 3.4a) or, in spatial motions, when the
axes of the joints intersect (Fig. 3.4b—

g8 C D motion on a sphere, considered special in
W the sense that \ # 6).

The existence of these special cases or

A F 3 “critical forms” can sometimes also be

AB =CF = DE detected by multigeneration effects

AF = BC, FE = CD involving pantographs, inversors, or mech-

anisms derived from these (see Sec. 3.6
and Ref. 154). In the general case, the
(a) critical form is associated with the singu-
) ) larity of the functional matrix of the dif-
FIG. 3.4 Special cases that are exceptions 0 ferential displacement equations of the
Eq. (3.1). (a) Parallelogram motion, F = 1. (b) : 30 thie o CP
Spheri . 2o coordinates; 'Y this singularity is usually
pherical four-bar mechanism, F = 1; axes of . ) N
four turning joints intersect at O. difficult to ascertain, however, especially
when higher pairs are involved. Known
cases are summarized in Ref. 154. For
two-degree-of-freedom systems, additional results are listed in Refs. 111 and 242.

3.2.3 Creation of Mechanisms According to the Separation of Kinematic
Structure and Function>*7+110.132.133

Basically this is an unbiased procedure for creating mechanisms according to the fol-
lowing sequence of steps:

1. Determine the basic characteristics of the desired motion (degree of freedom, plane
or spatial) and of the mechanism (number of moving links, number of independent
loops).

2. Find the corresponding kinematic chains from tables, such as in Ref. 133.

3. Find corresponding mechanisms by selecting joint types and fixed link in as many
inequivalent ways as possible and sketch each mechanism.

4. Determine functional requirements and, if possible, their relationship to kinematic
structure.

5. Eliminate mechanisms which do not meet functional requirements. Consider
remaining mechanisms in greater detail and evaluate for potential use.
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3.6 MECHANICAL DESIGN FUNDAMENTALS

The method is described in greater detail in Refs. 110 and 133, which show appli-
cations to casement window linkages, constant-velocity shaft couplings, other mecha-
nisms, and patent evaluation.

3.2.4 Kinematic Inversion

Kinematic inversion refers to the process of considering different links as the frame in
a given kinematic chain. Thereby different and possibly useful mechanisms can be
obtained. The slider crank, the turning-block and the swinging-block mechanisms are
mutual inversions, as are also drag-link and “crank-and-rocker” mechanisms.

3.2,5 Pin Enlargement

Another method for developing different mechanisms from a base configuration
involves enlarging the joints, illustrated in Fig. 3.5.

2~
/Join? 2-3

4
(o} {b)

FIG. 3.5 Pin enlargement. (a) Base configuration. (b) Enlarged pin at
joint 2-3; pin part of link 3. (c) Enlarged pin at joint 2-3; pin takes place
of link 2.

3.2.6 Mechanical Advantage

Neglecting friction and dynamic effects, the instantaneous power input and output of a
mechanism must be equal and, in the absence of branching (one input, one output,
connected by a single “path”), equal to the “power flow” through any other point of
the mechanism.

In a single-degree-of-freedom mechanism without branches, the power flow at any
point J is the product of the force F;atJ, and the velocity V.atJ in the direction of the
force. Hence, for any point in such a mechanism, !

FIVJ = constant 3.3)

neglecting friction and dynamic effects. For the point of input P and the point of out-
put Q of such a mechanism, the mechanical advantage is defined as

MA = FJF, (3.4)

3.2.7 Velocity Ratio

The “linear velocity ratio” for the motion of two points P and Q representing the input
and output members or “terminals” of a mechanism is defined as V /V,. If input and
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output terminals or links P and Q rotate, the “angular velocity ratio” is defined as
) Q/w » Where o designates the angular velocity of the link. If 7, and 7, refer to torque
output and input in single-branch rotary mechanisms, the power-flow equation, in the
absence of friction, becomes

T,w,=Tw 3.5

3.2.8 Conservation of Energy

Neglecting friction and dynamic effects, the product of the mechanical advantage and
the linear velocity ratio is unity for all points in a single-degree-of-freedom mecha-
nism without branch points, since FQVQ/FPVP = 1.

3.2.9 Toggle

Toggle mechanisms are characterized by sudden snap or overcenter action, such as in
Fig. 3.6a and b, schematics of a crushing mechanism and a light switch. The mechani-
cal advantage, as in Fig. 3.6a, can become very high. Hence toggles are often used in
such operations as clamping, crushing, and coining.

FIG. 3.6 Toggle actions. (@) P/F = (tan a + tan B)~! (neglecting
friction). (b) Schematic of a light switch.

3.2.10 Transmission Angle!>:15%160.166-168,176.205 (see Secs. 3.6 and 3.9)

The transmission angle w is used as a geometrical indication of the ease of motion of a
mechanism under static conditions, excluding friction. It is defined by the ratio

force component tending to move driven link 3
force component tending to apply pressure on driven-link bearing or guide =

tan p = 6)

where p is the transmission angle.

In four-link mechanisms, p is the
angle between the coupler and the driven
Driving Driven ligk (or the supplement of t‘his aIllgl.e)
crank link (Fig. 3.7) and has been used in optimiz-

7 ing linkage proportions (Secs. 3.6 and
3.9). Its ideal value is 90°; in practice it
may deviate from this value by 30° and
possibly more.

FIG. 3.7 Transmissional angle w and pressure
angle a (also called the deviation angle) in a four-
link mechanism.
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3.8 MECHANICAL DESIGN FUNDAMENTALS

Friction angle, g = tan™'
[t = coefticient of triction]

(a)

Coetficient of friction f

(d)

FIG. 3.8 Pressure angle (@) Cam and follower. (b) Gear teeth in mesh. (¢) Link
in sliding motion; condition of locking by friction (o« + ) = 90°. (d) Conditions
for locking by friction of a rotating link: sin . < fr,/1.

3.2.11 Pressure Angle

In cam and gear systems, it is customary to refer to the complement of the transmis-
sion angle, called the pressure angle a, defined by the ratio

_ force component tending to put pressure on follower bearing or guide
force component tending to move follower

tan o (3.7

The ideal value of the pressure angle is zero; in practice it is frequently held to
within 30° (Fig. 3.8). To ensure movability of the output member the ultimate criterion
is to preserve a sufficiently large value of the ratio of driving force (or torque) to fric-
tion force (or torque) on the driven link. For a link in pure sliding (Fig. 3.8¢), the
motion will lock if the pressure angle and the friction angle add up to or exceed 90°.

A mechanism, the output link of which is shown in Fig. 3.84, will lock if the ratio of
p, the distance of the line of action of the force F from the fixed pivot axis, to the bear-
ing radius r, is less than or equal to the coefficient of friction, f, i.e., if the line of action
of the force F cuts the “friction circle” of radius fr,, concentric with the bearing.'”

3.2.12 Kinematic Equivalence'>%182288.290347.376 (gee Sec. 3.6)

)

“Kinematic equivalence,” when applied to two mechanisms, refers to equivalence in
motion, the precise nature of which must be defined in each case.

The motion of joint C in Fig. 3.9a and b is entirely equivalent if the quadrilaterals
ABCD are identical; the motion of C as a function of the rotation of link AB is also
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KINEMATICS OF MECHANISMS 3.9

Circular slot,
center D

{a)

FIG. 3.9 Kinematic equivalence: (a), (b), (c¢) for four-bar motion; (d) illustrates rolling motion and
an equivalent mechanism. When O, and O, are fixed, curves are in rolling contact; when roll curve 1
is fixed and rolling contact is maintained, O, generates circle with center O,.

equivalent throughout the range allowed by the slot. In Fig. 3.9¢, B and C are the cen-
ters of curvature of the contacting surfaces at N; ABCD is one equivalent four-bar
mechanism in the sense that, if AB is integral with body 1, the angular velocity and
angular acceleration of link CD and body 2 are the same in the position shown, but not
necessarily elsewhere.

Equivalence is used in design to obtain alternate mechanisms, which may be
mechanically more desirable than the original. If, as in Fig. 3.9d, A/A, and BB, are
conjugate point pairs (see Sec. 3.4), with A B, fixed on roll curve 1, which is in rolling
contact with roll curve 2 (A,B, are fixed on roll curve 2), then the path of E on link
A,B, and of the coincident point on the body of roll curve 2 will have the same path
tangent and path curvature in the position shown, but not generally elsewhere.

3.2.13 The Instant Center

At any instant in the plane motion of a link, the velocities of all points on the link are pro-
portional to their distance from a particular
point P, called the instant center. The
velocity of each point is perpendicular to
the line joining that point to P (Fig. 3.10).

Frame of . .
reference Regarded as a point on the link, P has
E, an instantaneous velocity of zero. In pure

rectilinear translation, P is at infinity.
The instant center is defined in terms
FIG. 3.10 Instant center, . V,/V, = Ep/gp, v, ~ Of velocities and is not the center of path
L EP, etc. curvature for the points on the moving
link in the instant shown, except in spe-
cial cases, e.g., points on common tangent between centrodes (see Sec. 3.4).
An extension of this concept to the “instantaneous screw axis” in spatial motions
has been described.3®

3.2.14 Centrodes, Polodes, Pole Curves

Relative plane motion of two links can be obtained from the pure rolling of two
curves, the “fixed” and “movable centrodes” (“polodes” and “pole curves,” respectively),
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3.10

Fixed quide
for Aand B

FIG. 3.11 Construction of fixed and movable
centroides. Link AB in plane motion, guided at
both ends; PP’ = Pn’; n’ t” = P’'P”, etc.

MECHANICAL DESIGN FUNDAMENTALS

which can be constructed as illustrated in
the following example.

As shown in Fig. 3.11, the intersections
of path normals locate successive instant
centers P P, P”, ..., whose locus consti-
tutes the fixed centrode. The movable cen-
trode can be obtained either by inversion
(i.e., keeping AB fixed, moving the guide,
and constructing the centrode as before) or
by “direct construction”: superposing trian-
gles A'B'P’, A”"B"P”, ..., on AB so that A~
covers A and B’ covers B, etc. The new
locations thus found for P, P”, ..., marked
n’, ©”, ..., then constitute points on the
movable centrode, which rolls without slip
on the fixed centrode and carries AB with

it, duplicating the original motion. Thus, for the motion of AB, the centrode-rolling motion
is kinematically equivalent to the original guided motion.

In the antiparallel equal-crank linkage, with the shortest link fixed, the centrodes
for the coupler motion are identical ellipses with foci at the link pivots (Fig. 3.12); if
the longer link AB were held fixed, the centrodes for the coupler motion of CD would
be identical hyperbolas with foci at A, B, and C, D, respectively.

In the elliptic trammel motion (Fig. 3.13) the centrodes are two circles, the smaller
rolling inside the larger, twice its size. Known as “cardanic motion,” it is used in press

drives, resolvers, and straight-line guidance.

FIG. 3.12 Antiparallel equal-crank linkage;
rolling ellipses, foci at A, D, B, C; AD < AB.

Radius 2R,
center O

Rodius R

FIG. 3.13 Cardanic motion of the elliptic tram-
mel, so called because any point C of AB
describes an ellipse; midpoint of AB describes
circle, center O (point C need not be collinear
with AB).

Apart from their use in kinematic analysis, the centrodes are used to obtain alter-
nate, kinematically equivalent mechanisms, and sometimes to guide the original mech-
anism past the “in-line” or “dead-center” positions.?’?

3.2.15 The Theorem of Three Centers

A
. /\ Py
23
P 3 4
24 2
P.7 PI 4
12 {
FIG. 3.14 Instant centers in four-bar motion.

Also known as Kennedy’s or the
Aronhold-Kennedy theorem, this theorem
states that, for any three bodies i, j, k in
plane motion, the relative instant centers
PI.,., P,.k, P, are collinear; here P, for
instance, refers to the instant center of the
motion of link 7 relative to link j, or vice
versa. Figure 3.14 illustrates the theorem
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with respect to four-bar motion. It is used in determining the location of instant centers
and in planar path curvature investigations.

3.2.16 Function, Path, and Motion Generation

In “function generation” the input and output motions of a mechanism are linear
analogs of the variables of a function F(x,y, ...) = 0. The number of degrees of free-
dom of the mechanism is equal to the number of independent variables.

For example, let ¢ and s, the linear or rotary motions of the input and output links
or “terminals,” be linear analogs of x and y, where y = f(x) within the range x,< x <
X, Yo =Y =0y, Letthe input values &, d)j., &, ., and the output values s, 111/., Ui
correspond to the values x, x, x, , and y,, Vi Yorrr of x and y, respectively, where the
subscripts 0, j, and (n + 1) éesignate starting, jth intermediate, and terminal values.
Scale factors Fy» Iy are defined by

o = (0, = x)(d, . — by Ty = Opsr = YW,y — Uyp)

(it is assumed that y #y . ), such thaty — y, = rw(tb - \bj), x—x = rd)(d) — d)/.), whence

alldd = (r oT

ayldx), dbldy? = (rifr, ll‘)(dzy/dxz), and generally,

anldd" = (ré)’/rw

In “path generation” a point of a floating link traces a prescribed path with refer-
ence to the frame. In “motion generation” a mechanism is designed to conduct a float-
ing link through a prescribed sequence of positions (Ref. 382). Positions along the
path or specification of the prescribed motion may or may not be coordinated with
input displacements.

d"yldx")

3.3 PRELIMINARY DESIGN ANALYSIS:
DISPLACEMENTS, VELOCITIES, AND
ACCELERATIONS (Refs. 41, 58, 61, 62, 96, 116, 117,
129, 145, 172, 181, 194, 212, 263, 278, 298, 302, 309, 361,
384, 428, 487; see also Sec. 3.9)

Displacements in mechanisms are obtained graphically (from scale drawings) or ana-
lytically or both. Velocities and accelerations can be conveniently analyzed graphically
by the “vector-polygon” method or analytically (in case of plane motion) via complex
numbers. In all cases, the “vector equation of closure” is utilized, expressing the fact
that the mechanism forms a closed kinematic chain.

3.3.1 Velocity Analysis: Vector-Polygon Method

The method is illustrated using a point D on the connecting rod of a slider-crank
mechanism (Fig. 3.15). The vector-velocity equation for C is
Vo=V, + Vi, +V/

s &p = avector parallel to line AX

where V. = velocity of C (Fig. 3.15)
V, = velocity of B
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V¢, = normal component of velocity of C relative to B = component of relative
velocity along BC = zero (owing to the rigidity of the connecting rod)
= tangential component of velocity of C relative to B, value (w.) BC, per-
pendicular to BC

Vt

C/B

Il to AX
o] \ C
1 to DC
1 10 BC 1 to BC
1 to BD ‘
‘
b

FIG. 3.16 Velocity polygon for slider-crank
FIG. 3.15 Offset slider-crank mechanism. mechanism of Fig. 3.15.

The velocity equation is now “drawn” by means of a vector polygon as follows:

1. Choose an arbitrary origin o (Fig. 3.16).

2. Label terminals of velocity vectors with lowercase letters, such that absolute velocities
start at o and terminate with the letter corresponding to the point whose velocity is
designated. Thus V, = ob, V_= oc, to a certain scale.

3. Draw ob = (w,,) E/kv, where k is the velocity scale factor, say, inches per inch
per second.

4. Draw be L BC and oc||[AX to determine intersection c.
5. Then V. = (oc)/k ; absolute velocities always start at o.

6. Relative velocities V., etc., connect the terminals of absolute velocities. Thus
Vs = (be)/k,. Note the reversal of order in C/B and be.

7. To determine the velocity of D, one way is to write the appropriate velocity-vector

equation and draw it on the polygon: V, = V. + Vi .+ V[ _ the second is to uti-
lize the “principle of the velocity image.” This principle states that Abcd in the
velocity polygon is similar to ABCD in the mechanism, and the sense b — ¢ — d is
the same as that of B — C — D. This “image construction” applies to any three
points on a rigid link in plane motion. It has been used in Fig. 3.16 to locate d,

whence V,, = (od)/k .
8. The angular velocity w,. of the coupler can now be determined from
B Vg, B (ch)/k)
i "o e
The sense of w,. is determined by imagining B fixed and observing the sense of
Vs Here oy is counterclockwise.

9. Note that to determine the velocity of D it is easier to proceed in steps, to deter-
mine the velocity of C first and thereafter to use the image-construction method.

3.3.2 Velocity Analysis: Complex-Number Method

Using the slider crank of Fig. 3.15 once more as an illustration with x axis along the
center line of the guide, and recalling that i> = —1, we write the complex-number
equations as follows, with the equivalent vector equation below each:
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Displacement: ae'®a + be'®h + ce'®c = x (3.8)

AB + BD + DC = AC

Velocity: iae®w,, + (ibe'® + ice*)w, . = dx/dt (t = time) (3.9)
Vet Vot Vop = Ve
Note that w,, = do /dt is positive when counterclockwise and negative when clock-

wise; in this problem o, , is negative.
The complex conjugate of Eq. (3.9)

—iae %aw, , — (ibe” "% + ice”®c)w, . = dx/dt (3.10)
From Egs. (3.9) and (3.10), regarded as simultaneous equations:

ia(e'®a + e~a) acos ¢,

—ib(e'% + e7%) — jc(e®c + e %) —(b cos ¢,+ ccos )

Oy

(’OBC —

= = jqe'® ibe'®
V,=V,+V,,=iae%w,, + iberw,.

The quantities ¢, ¢,, ¢, are obtained from a scale drawing or by trigonometry.
Both the vector-polygon and the complex-number methods can be readily extended
to accelerations, and the latter also to the higher accelerations.

3.3.3 Acceleration Analysis: Vector-Polygon Method

We continue with the slider crank of Fig. 3.15. After solving for the velocities via the
velocity polygon, write out and “draw” the acceleration equations. Again proceed in
order of increasing difficulty: from B to C to D, and determine first the acceleration of
point C:
A =AL=AL= A+ AL+ AL, + AL,

where A7, = acceleration normal to path of C (equal to zero in this case)

A’ = acceleration parallel to path of C

A" = acceleration normal to path of B, value a) (A_) direction B to A

Afg = acceleration parallel to path of B, value ocAB(AB) 1 AB, sense determined

by that of a,, (Where o, = do, ,/dt)

A}, = acceleration component of C relative to B, in the direction C to B, value
(BC)wy _
ALy = acceleratlon component of C relative to B, L BC value a,. (BC). Since

¢ 1s unknown, so is the magnitude and sense of A/,
The acceleration polygon is now drawn as follows (Fig. 3.17):

1. Choose an arbitrary origin o, as

— —_ Il to OX
oL Ox_ by (along cb) / of fig.3.15 before. |
/O(\ 0 2. Draw each acceleration of scale k,
ARSI (inch per inch per second squared),
> ; and label the appropriate vector termi-
9, {along ba) nals with the lowercase letter corre-
d % sponding to the point whose accelera-
FIG. 3.17 Acceleration polygon for slider crank tion is designated, e.g., Ay = (ob)/k,.
of Fig. 3.15. Abcd = ABCD of Fig. 3.15. Draw A’;, A, and A7 .
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3. Knowing the direction of Aé/B(J_ BC), and also of A . (along the slide), locate ¢ at
the intersection of a line through o, parallel to AX, and the line representing A’ .
A, = (00)/k,

4. The acceleration of D is obtained using the “principle of the acceleration image,”
which states that, for any three points on a rigid body, such as link BCD, in plane
motion, Abcd and ABCD are similar, and the sense b — ¢ — d is the same as that
of B> C—D. A, = (od)/k,

5. Relative accelerations can also be found from the polygon. For instance, A
(de)/k ; note reversal of order of the letters C and D.

6. The angular acceleration o, of the connecting rod can now be determined from
@y = |Al/BC. Tts sense is determined by that of Al

7. The acceleration of D can also be obtained by direct drawing of the equation A ) =
AT A,

op T

3.3.4 Acceleration Analysis: Complex-Number Method (sce Fig. 3.15)
Differentiating Eq. (3.9), obtain the acceleration equation of the slider-crank mechanism:

aea(io,, — w?,) + (be'®s + ce'c)(io,, — wi ) = d’x/dr (3.11)
This is equivalent to the vector equation

AL+ AL+ AL

T ALt AGp T AL, = AL T AL
Combining Eq. (3.11) and its complex conjugate, eliminate d°x/dr* and solve for o,
Substitute the value of o, in the following equation for A -
— go%alicn  — w? Oh(ior — w2
A+ A+ A, = aeaia,, — wi,) + be'b(ioy. — wy)

The above complex-number approach also lends itself to the analysis of motions
involving Coriolis acceleration. The latter is encountered in the determination of the
relative acceleration of two instantaneously coincident points on different
links. 0017138 The general complex-number method is discussed more fully in Ref.
381. An alternate approach, using the acceleration center, is described in Sec. 3.4. The
accelerations in certain specific mechanisms are discussed in Sec. 3.9.

3.3.5 Higher Accelerations (sce also Sec. 3.4)

The second acceleration (time derivative of acceleration), also known as “shock,”
“jerk,” or “pulse,” is significant in the design of high-speed mechanisms and has been
investigated in several ways.*!61:62.106.298.381.384487 Tt can be determined by direct differ-
entiation of the complex-number acceleration equation.*! The following are the basic
equations:

Shock of B Relative to A (where A and B represent two points on one link whose
angular velocity is o ; o, = dw /df).***  Component along AB:

—3a w AB
PP
Component perpendicular to AB:

AB(dOLp/dl - w;)
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in direction of ®, X AB.

Absolute Shock.*®  Component along path tangent (in direction of w, X AB):
dvldi? — Vip?

where v = velocity of B and p = radius of curvature of path of B.
Component directed toward the center of curvature:

vlzdv _vdp
p| dt p dt

Absolute Shock with Reference to Rolling Centrodes (Fig. 3.18, Sec. 3.4) [/, m as in
Eq. (3.22)]. Component along AP:

®23
—3(1)3885in\JgL-1-l + 8 cos s 1_1\_r g=—2
P m g I 3 g o

4

Component perpendicular to AP in direction of w, X PA:
do
= — o) + 38%° cost,;L-i-i — sin 1.1
dt P P m g I g

3.3.6 Accelerations in Complex Mechanisms

When the number of real unknowns in the complex-number or vector equations is
greater than two, several methods can be used.!%%143:309 These are applicable to mecha-
nisms with more than four links.

3.3.7 Finite Differences in Velocity and Acceleration Analysis?!?373419:428

When the time-displacement curve of a point in a mechanism is known, the calculus of
finite differences can be used for the calculation of velocities and accelerations. The
data can be numerical or analytical. The method is useful also in ascertaining the exis-
tence of local fluctuations in velocities and accelerations, such as occur in cam-follower
systems, for instance.

Let a time-displacement curve be subdivided into equal time intervals Ar and
define the ith, the general interval, as L<t<t such that Ar = Ly =t The “central-
difference” formulas then give the following approximate values for velocities dy/dt,
accelerations d?y/dt?, and shock d®y/dr’, where y, denotes the displacement y at the
time t = ¢

I

. dy _ Vi1 T
Velocity at t = t.+ %A: —_ = 3.12
elocity a ; i A ( )

&y _ Yin 2yt iy

Acceleration at t = ¢.:
i dr* (A1)?

(3.13)

_ d3y Vi T 3y a1 T 3yi7 Vi1
Shock at t = .+ 4At: o 7V (3.14)
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If the values of the displacements y, are known with absolute precision (no error), the
values for velocities, accelerations, and shock in the above equations become increas-
ingly accurate as At approaches zero, provided the curve is smooth. If, however, the
displacements y, are known only within a given tolerance, say * ey, then the accuracy
of the computations will be high only if the interval Az is sufficiently small and, in
addition, if

2ey/At << dyldt for velocities
dey/(Ar)? << d*yldr? for accelerations
8ey/(A*<< d’yldP for shock

and provided also that these requirements are mutually compatible.

Further estimates of errors resulting from the use of Egs. (3.12), (3.13), and (3.14),
as well as alternate formulations involving “forward” and “backward” differences, are
found in texts on numerical mathematics (e.g., Ref. 193, pp. 94-97 and 110-112, with
a discussion of truncation and round-off errors).

The above equations are particularly useful when the displacement-time curve is
given in the form of a numerical table, as frequently happens in checking an existing
design and in redesigning.

Some current computer programs in displacement, velocity, and acceleration analy-
sis are listed in Ref. 129; the kinematic properties of specific mechanisms, including
spatial mechanisms, are summarized in Sec. 3.9.1%

3.4 PRELIMINARY DESIGN ANALYSIS:
PATH CURVATURE

The following principles apply to the analysis of a mechanism in a given position, as
well as to synthesis when motion characteristics are prescribed in the vicinity of a par-
ticular position. The technique can be used to obtain a quick “first approximation” to
mechanism proportions which can be refined at a later stage.

3.4.1 Polar-Coordinate Convention

Angles are measured counterclockwise from a directed line segment, the “pole tangent”
PT, origin at P (see Fig. 3.18); the polar coordinates (7 {s) of a point A are either r =
IPAl, ¢ = £TPA or r = —IPAl, ¢ = LTPA = 180°. For example, in Fig. 3.18 r is positive,
but r_is negative.

3.4.2 The Euler-Savary Equation (Fig. 3.18)

PT = common tangent of fixed and moving centrodes at point of contact P (the instant
center).

PN = principal normal at P; ZTPN = 90°.
PA = line or ray through P.

C,(r,, ) = center of curvature of path of A(r, {) in position shown. A and C, are called
“conjugate points.”
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Principal
normal

|

)

©
a
D

3
Moving inflection
centrode) circle
T
Fixed
5 centrode
Return
circle
Calre, )

FIG. 3.18 Notation for the Euler-Savary equation.

6 = angle of rotation of moving centrode, positive counterclockwise.
s = arc length along fixed centrode, measured from P, positive toward 7.
The Euler-Savary equation is valid under the following assumptions:

1. During an infinitesimal displacement from the position shown, d6/ds is finite and
different from zero.

2. Point A does not coincide with P.
3. AP is finite.

Under these conditions, the curvature of the path of A in the position shown can be
determined from the following “Euler-Savary” equations:

[(1/r) = (Ur)] siny = —db/ds = — u)p/vp (3.15)

where w = angular velocity of moving centrode
= dB/dt, t = time
v, = corresponding velocity of point of contact between centrodes along the
fixed centrode
= ds/dt

Let r,, = polar coordinate of point W on ray PA, such that radius of curvature of
path of W is infinite in the position shown; then W is called the “inflection point” on
ray PA, and

Ur—=1r, = 1r, (3.16)

The locus of all inflection points W in the moving centrode is the “inflection circle,”
tangent to PT at P, of diameter PW, = & = —ds/dO, where W, the “inflection pole,” is
the inflection point on the principal normal ray. Hence,

[(1/r) — (1/r)] sin g = 1/ (3.17)
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The centers of path curvature of all points at infinity in the moving centrode are on the
“return circle,” also of diameter 8, and obtained as the reflection of the inflection cir-
cle about line PT. The reflection of W, is known as the “return pole” R,,. For the pole
velocity (the time rate change of the position of P along the fixed centrode as the
motion progresses, also called the “pole transfer velocity”**') we have

v =dsldt= — w8 (3.18)
P P

The curvatures of the paths of all points on a given ray are concave toward the inflec-
tion point on that ray.
For the diameter of the inflection and return circles we have

5= rprn/(rn—rp) (3.19)

where r, and r__ are the polar coordinates of the centers of curvature of the moving and
fixed centrodes, respectively, = r.— r be the instantaneous value of the radius
of curvature of the path of A, and w = AW, then

= pw (3.20)

which is known as the “quadratic form” of the Euler-Savary equation.

Conjugate points in the planes of the moving and fixed centrodes are related by a
“quadratic transformation.”*> When the above assumptions 1, 2, and 3, establishing the
validity of the Euler-Savary equations, are not satisfied, see Ref. 281; for a further cur-
vature theorem, useful in relative motions, see Ref. 23. For a computer-compatible
complex-number treatment of path curvature theory, see Ref. 421f, Chap. 4.

EXAMPLE Cylinder of radius 2 in, rolling inside a fixed cylinder of radius 3 in, common
tangent horizontal, both cylinders above the tangent, 8 = 6 in, W (6, 90°). For point
A(V2,45°), 1, = 15 cl(15\/§45)p —05\/5;’1—3\/5\/—*60),
For point A,(~\/2, 135°), 7, = —0.75 V2, C,,(~0.75 V2, 135%).p,, = 0252, r , £
3V2.

Complex-number forms of the Euler-Savary equation®*421/ and related expressions
are independent of the choice of the x, iy coordinate system. They correlate the following
complex vectors on any one ray (see Fig. 3.18): a = PA,w = PW, ¢ = PC, and p =
C,A, each expressed explicitly in terms of the others:

1. If points P, A, and W are known, find C, by
p = (a*la — wl) e/ @2@=—W

where a = lal.
2. If points P, A, and C, are known, find W by

w=a — (alp)’p

where p = Ipl.
3. If points P, W, and C, are known, find A by

a=wc/(w+c¢)
4. If points A, C,, and W are known, find P by

a = I(IWAIp)!2(+ efozP)
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Note that the last equation yields two possible locations for P, symmetric about A.
This is borne out also by Bobillier’s construction (see Ref. 421f, Fig. 4.29, p. 329).

5. The vector diameter of the inflection circle, & = PW,, in complex notation:
0= —rprn/(rp -r) 3.19a)

where r = OpP, r,. = O P and O and O, are the centers of curvature of the fixed
and moving centrodes, respectively.

6. The pole velocity in complex vector form is
v, =08 (3.18a)

where o_is the angular velocity of the moving centrode.

7. If points P, A, and W are known:

W = cos (arg a — arg 8)de/ea ~ aed)

With the data of the above example, letting PT be the positive x axis and PN the

positive iy axis, we have r = —i2, v, = —i3; 8 = —(—i2)(—i3)/(—i3 + i2) = i6,
which is the same as the vector locating the inflection pole W, w, = PW = i6. For
point A,

a, = V2" w, = cos (45° — 90°)i6e 39 = 3\/2¢i45°

1

Py = (2/IV2e° — 3V2e45) expli arg (V2645 =3V245)] = (V2/2)ei =135

¢, = a,— p,, = V2 — (V2/2)el 13 = (3V/2/2)e
Vv, = iw 6 = — wb
For point A,

a, = V/2¢i(—45) W, = cos (—45°—90°)i6e 45790 = 3V 2613
Py = 21V 2645 — 3V/26i135)) expli arg (V24 =3V 2¢135)] = (V/2/4)ei 4"

and C,, = a, — p,, = (V2= V2/d)el =45 = (3V2/4)ei-45")

Note that these are equal to the previous results and are readily programmed in a digi-
tal computer.

Graphical constructions paralleling the four forms of the Euler-Savary equation are
given in Refs. 394 and 421f, p. 3.27.

3.4.3 Generating Curves and Envelopes®*

Let g-g be a smooth curve attached to the moving centrode and e-e be the curve in the
fixed centrode enveloping the successive positions of g-g during the rolling of the cen-
trodes. Then g-g is called a “generating curve” and e-e its “envelope” (Fig. 3.19).

It C, is the center of curvature of g-g and C, that of e-e (at M):

1. C, P M, and Cg are collinear (M being the point of contact between g-g and e-e).
2. C,and Cg are conjugate points, i.e., if Cg is considered a point of the moving centrode,
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the center of curvature of its path lies at C,; interchanging the fixed and moving
centrodes will invert this relationship.

3. Aronhold’s first theorem: The return circle is the locus of the centers of curvature
of all envelopes whose generating curves are straight lines.

4. If a straight line in the moving plane always passes through a fixed point by sliding
through it and rotating about it, that point is on the return circle.

5. Aronhold’s second theorem: The inflection circle is the locus of the centers of cur-
vature for all generating curves whose envelopes are straight lines.

EXAMPLE (utilizing 4 above): In the swinging-block mechanism of Fig. 3.20, point C is
on the return circle, and the center of curvature of the path of C as a point of link BD is
therefore at C, halfway between C and P. Thus ABCC, constitutes a four-bar mechanism,
with C_as a fixed pivot, equivalent to the original mechanism in the position shown with
reference to path tangents and path curvatures of points in the plane of link BD.

FIG. 3.20 Swinging-block mechanism: CC, =
FIG. 3.19 Generating curve and envelope. CP

3.4.4 Bobillier's Theorem

Consider two separate rays, 1 and 2 (Fig. 3.21), with a pair of distinct conjugate points
on each, A, C, and A,, C,. Let Q,,,, be the intersection of A|A, and C,C,. Then the
line through PQ,,,, is called the “collineation
axis,” unique for the pair of rays 1 and 2,
regardless of the choice of conjugate point
pairs on these rays. Bobillier’s theorem states
that the angle between the common tangent of
the centrodes and one ray is equal to the angle
between the other ray and the collineation
axis, both angles being described in the same
sense.’%8 Also see Ref. 421f, p. 3.31.

The collineation axis is parallel to the line
joining the inflection points on the two rays.
FIG.3.21 Bobillier's construction. Bobillier’s construction for determining

the curvature of point-path trajectories is
illustrated for two types of mechanisms in

Figs. 3.22 and 3.23.

Another method for finding centers of path curvature is Hartmann’s construction,
described in Refs. 83 and 421f, pp. 332-336.

Occasionally, especially in the design of linkages with a dwell (temporary rest of
output link), one may also use the “sextic of constant curvature,” known also as the p
curve,3>*?1f the locus of all points in the moving centrode whose paths at a given
instant have the same numerical value of the radius of curvature.
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Rolling circle,

FIG. 3.23 Bobillier’s construction for cycloidal
FIG. 3.22 Bobillier’s construction for the center ~ motion. Determination of C,, the center of curva-
of curvature C, of path of E on coupler of four-  ture of the path of A, attached to the rolling circle
bar mechanism in position shown. (in position shown).

The equation of the p curve in the cartesian coordinate system in which PT is the
positive x axis and PN the positive y axis is

(242 — pX(2+ )2 — 8y =0 (3.20a)

where p is the magnitude of the radius of path curvature and 8 is that of the inflection
circle diameter.

3.45 The Cubic of Stationary Curvature (the k, Curve)*"

The “k, curve” is defined as the locus of all points in the moving centrode whose rate
of change of path curvature in a given position is zero: dp/ds = 0. Paths of points on
this curve possess “four-point contact” with their osculating circles. Under the same
assumptions as in Sec. 3.4.1, the following is the equation of the k curve:

(sin ¥ cos Y)/r = (sin ¥)/m + (cos P)/! (3.21)
where (1, {) = polar coordinates of a point on the k, curve
m = —33/(dd/ds) (3.22)
= 3rprn/(2rn - rp)
In cartesian coordinates (x and y axes PT and PN),
&%+ yH(mx + yl) — Imxy =0 (3.23)

The locus of the centers of curvature of all points on the k, curve is known as the
“cubic of centers of stationary curvature,”**/ or the “k, curve.” Its equation is

(2 + y)(mx + I'y) — I'mxy = 0 (3.24)
where Ul— U =1/ (3.25)

The construction and properties of these curves are discussed in Refs. 26, 256, and
421f.

The intersection of the cubic of stationary curvature and the inflection circle yields
the “Ball point” U(r,, {,), which describes an approximate straight line, i.e., its path

w
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possesses four-point contact with its tangent (Ref. 421f, pp. 354-356). The coordinates
of the Ball point are
. (3.26)
S abids) ’

r,=3dsiny, (327)

In the case of a circle rolling inside or outside a fixed circle, the Ball point coincides
with the inflection pole.

Technical applications of the cubic of stationary curvature, other than design analysis in
general, include the generation of n-sided polygons,’? the design of intermittent-motion
mechanisms such as the type described in Ref. 426, and approximate straight-line generation.
In many of these cases the curves degenerate into circles and straight lines.?? Special analy-
ses include the “Cardan positions of a plane” (osculating circle of moving centrode inside
that of the fixed centrode, one-half its size; stationary inflection-circle diameter)*'?¢ and
dwell mechanisms. The latter utilize the “q, curve” (locus of points having equal radii of path
curvature in two distinct positions of the moving centrode) and its conjugate, the “g, curve.”
See also Ref. 395a.

3.4.6 Five and Six Infinitesimally Separated Positions of a Plane (Ref. 421f,
pp. 241-245)

In the case of five infinitesimal positions, there are in general four points in the mov-
ing plane, called the “Burmester points,” whose paths have “five-point contact” with
their osculating circles. These points may be all real or pairwise imaginary. Their
application to four-bar motion is outlined in Refs. 32, 411, 469, and 489, and related
computer programs are listed in Ref. 129, the last also summarizing the applicable
results of six-position theory, insofar as they pertain to four-bar motion. Burmester
points and points on the cubic of stationary curvature have been used in a variety of
six-link dwell mechanisms.?>!5

3.4.7 Application of Curvature Theory to Accelerations (Ref. 421f, p. 313)

1. The acceleration A of the instant center (as a point of the moving centrode) is
givenby A = wz(PpWO); it is the only point of the moving centrode whose acceler-
ation is indpepen(ﬁ:nt of the angular acceleration o,

2. The inflection circle (also called the “de la Hire circle” in this connection) is the
locus of points having zero acceleration normal to their paths.

3. The locus of all points on the moving centrode, whose tangential acceleration (i.e.,
acceleration along path) is zero, is another circle, the “Bresse circle,” tangent to the
principal normal at P, with diameter equal to — w[fB/a where o is the angular
acceleration of the moving centrode, the positive sense of which is the same as that
of 6. In complex vector form the diameter of the Bresse circle is imiﬁ/txp (Ref. 421f,
pp. 336-338).

4. The intersection of these circles, other than P, determines the point F, with zero
total acceleration, known as the “acceleration center.” It is located at the intersec-
tion of the inflection circle and a ray of angle vy, where

vy =<4 WPPF = tan"(ocp/mi) 0<Iyl<90°
measured in the direction of the angular acceleration (Ref. 421f, p. 337).
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. The acceleration A of any point B in the moving system is proportional to its dis-
tance from the acceleration center:

A, = BD)(d Mo’ + o2)" (3.28)

. The acceleration vector A, of any point B makes an angle -y with the line joining it
to the acceleration center [see Eq. (3.28)], where vy is measured from A, in the
direction of angular acceleration (Ref. 421f, p. 340).

. When the acceleration vectors of two points (V, U) on one link, other than the pole,
are known, the location of the acceleration center can be determined from item 6
and the equation
A,
AZ/V

[tan yl =

. The concept of acceleration centers and images can be extended also to the higher
accelerations*! (see also Sec. 3.3).

3.4.8 Examples of Mechanism Design and Analysis Based
on Path Curvature

1. Mechanism used in guiding the grinding tool in large gear generators (Fig. 3.24):

The radius of path curvature p, of M at the instant shown: p = (W, W,)/(2 tan® 6),
at which instant M is on the cubic of stationary curvature belonging to link W,W,;
p,, is arbitrarily large if 6 is sufficiently small.

28 FIG. 3.24 Mechanism used in guiding the
grinding tool in large gear generators. (Due to A.
H. Candee, Rochester, N.Y.) MW, = MW,; link
W, W, constrained by straight-line guides for W,
and W,.

. Machining of radii on tensile test specimens'”>*% (Fig. 3.25): C lies on cubic of
stationary curvature; AB is the diameter of the inflection circle for the motion of
link ABC; radius of curvature of path of C in the position shown:

p, = (AC)Y/(BC)

3. Pendulum with large period of oscillation, yet limited size?$3#3* (Fig. 3.26), as used

Lathe /
B = ks CEY

c
B \Tip of cutter //
S s e 18
FA
L« Compound P w
rest ;7N
AN s
A-3—0<E %

FIG. 3.25 Machining of radii on tensile test  FIG. 3.26 Pendulum with large period of oscil-
specimens. B guided along X — X. lation.
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in recording ship’s vibrations: AB = a, AC = b, CS = s, r, = radius of gyration of
the heavy mass S about its center of gravity. If the mass other than S and friction
are negligible, the length / of the equivalent simple pendulum is given by
ot
~ (blay)b — a)

where the distance CW is equal to (b/a)(b — a). The location of S is slightly below
the inflection point W, in order for the oscillation to be stable and slow.

4. Modified geneva drive in high-speed bread wrapper®”” (Fig. 3.27): The driving pin
of the geneva motion can be located at or near the Ball point of the pinion motion;
the path of the Ball point, approximately square, can be used to give better kine-
matic characteristics to a four-station geneva than the regular crankpin design, by
reducing peak velocities and accelerations.

Common
fongem‘\

Sun gear, }

radius 4R, I/Pa’fh of

fixed +__crank pin

Drive arm H

— .J ed
T_ Normal to line of centers

FIG. 3.27 Modified geneva drive in high-speed  FIG. 3.28 Angular acceleration diagram for
bread wrapper. noncircular gears.

5. Angular acceleration of noncircular gears (obtainable from equivalent linkage
0,ABO,) (Ref. 116, discussion by A. H. Candee; Fig. 3.28):

Let o, = angular velocity of left gear, assumed constant, counterclockwise

w, = angular velocity of right gear, clockwise
a, = clockwise angular acceleration of right gear
Then o, = [r/(r, + r,)/r}] (tan B)o?

3.5 DIMENSIONAL SYNTHESIS: PATH,
FUNCTION, AND MOTION GENERATION!%42\

In the design of automatic machinery, it is often required to guide a part through a
sequence of prescribed positions. Such motions can be mechanized by dimensional
synthesis based on the kinematic geometry of distinct positions of a plane. In plane
motion, a “kinematic plane,” hereafter called a “plane,” refers to a rigid body, arbitrary
in extent. The position of a plane is determined by the location of two of its points, A
and B, designated as A, B, in the ith position.
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3.5.1 Two Positions of a Plane

According to “Chasles’s theorem,” the
motion from A B, to A,B, (Fig. 3.29) can
be considered as though it were a rota-
~. B2 tion about a point P,,, called the pole,

>
I
|
=
)
|
o
&/
/
/
Q=
/
/

12°

| / which is the intersection of the perpen-
a,az: ’gxbz dicular bisecFors a,a,, b\b, of A /A, and

: y; BB, respectively. Al, Az, ..., are called

) /o AM=MA, “corresponding positions” of point A; B,

{ /BN NB, B,, ..., those of point B; A\B,, A,B,, ...,

4 those of the plane AB.

II/P, A similar construction applies to the

~

“relative motion of two planes” (Fig. 3.30)
FIG. 3.29 Two positions of a plane. Pole P,, = AB and CD (pQSItlonS AiBi a.nd CiDi’ L=
aaXbb.. 1, 2). The “relative pole” Q,, is constructed
142 1”2 N . 12
by transferring the figure A,B,C,D, as a
rigid body to bring A, and B, into coinci-
dence with A, and B,, respectively, and denoting the new positions of C,, D,, by C!, D;,
respectively. Then Q,, is obtained from C,D, and C)D), as in Fig. 3.29.

¢
N
RN
6\// VRN
7 T ~¢ ‘\)D%
C; | \\ ! | CZ
CEINNLLS Az
AN
A, T
B,
D
8, 2
Frame of reference, Eo\

FIG. 3.30 Relative motion of two planes, AB and CD. Relative
pole, O, = ¢,cy X d|d,.

1. The motion of A B, to A,B, in Fig. 3.29 can be carried out by four-link mecha-
nisms in which A and B are coupler-hinge pivots and the fixed-link pivots A, B,
are located on the perpendicular bisectors a,a,, b,b,, respectively.

2. To construct a four-bar mechanism A ABB,, when the corresponding angles of rota-
tion of the two cranks are prescribed (in Fig. 3.31 the construction is illustrated
with ¢, clockwise for A A and s, clockwise for B B):

a. From line A B X, lay off angles /d,, and J4(s,, opposite to desired direction of
rotation of the cranks, locating Q,, as shown.
b. Draw any two straight lines L, and L, through Q,,, such that

L LQ,L, = L A0,B,

in magnitude and sense.

c. A, can be located on L, B, and L,, and when AA, rotates clockwise by ¢,,,
BB, will rotate clockwise by is,,. Care must be taken, however, to ensure that
the mechanism will not lock in an intermediate position.

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2006 The McGraw-Hill Companies. All rights reserved.
Any use is subject to the Terms of Use as given at the website.



KINEMATICS OF MECHANISMS

3.26 MECHANICAL DESIGN FUNDAMENTALS

FIG. 3.32 Pole triangle for three positions of a
FIG. 3.31 Construction of four-bar mechanism  plane. Pole triangle P,,P,,P ; for three positions
A,A B B, in position 1, for prescribed rotations  of a plane; image poles P}, P, P%; subtended
b,, vs. U, both clockwise in this case. angles %d,,, 4ds,.

3.5.2 Three Positions of a Plane (AB, i = 1,2, 3)*

In this case there are three poles P,,, P,;, P,, and three associated rotations ¢ ,, ¢,.,
b, where (bl.j =LAPA =L BBB, The three poles form the vertices of the pole
triangle (Fig. 3.32). Note that P,=P,and ¢, = — b,

Theorem of the Pole Triangle. The internal angles of the pole triangle, correspond-
ing to three distinct positions of a plane, are equal to the corresponding halves of the
associated angles of rotation d)[, which are connected by the equation

Vb, + B, + b, = 180° L hb, = L P,P.P,
Further developments, especially those involving subtention of equal angles, are found
in the literature.??

For any three corresponding points A, A,, A,, the center M of the circle passing
through these points is called a “center point.” If P, is considered as though fixed to
link A B, (or A]B ) and A B, (or A/.B ) is transferred to position k (A B, then Pi,, moves to
a new position P¥, known as the “image pole,” because it is the image of P, reflected
about the line joining P, P, APikijPi];' is called an “image-pole triangle” (léig. 3.32).
For “circle-point” and “center-point circles” for three finite positions of a moving
plane, see Ref. 106, pp. 436446 and Ref. 421f, pp. 114-122.

3.5.3 Four Positions of aPlane (AB,i=1,2,3,4)

With four distinct positions, there are six poles P, PP, P
triangles (P12P23P13)’ (P12P24P14)’ (P13P34P]4)’ (P23P34P24)'

Any two poles whose subscripts are all different are called “complementary poles.”
For example, P,.P,,, or generally PP, where i, j, k, [ represents any permutation of
the numbers 1, 2, 3, 4. Two complementary-pole pairs constitute the two diagonals of
a “complementary-pole quadrilateral,” of which there are three: (P,P,,P,,P ),
(P3P3,P, Py, and (PP PP ).

Also associated with four positions are six further points [], found by intersections
of opposite sides of complementary-pole quadrilaterals, or their extensions, as follows:

IT, = PP, X Pi/'ij'

P,,, P,, and four pole

14> 7 23> 7 24°
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3.5.4 The Center-Point Curve or Pole Curve32¢7:127421f

For three positions, a center point corresponds to any set of corresponding points; for
four corresponding points to have a common center point, point A; can no longer be
located arbitrarily in plane AB. However, a curve exists in the frame of reference
called the “center-point curve” or “pole curve,” which is the locus of centers of circles,
each of which passes through four corresponding points of the plane AB. The center-
point curve may be obtained from any complementary-pole quadrilateral; if associated
with positions i, j, k, [, the center-point curve will be denoted by My Using complex
numbers, let OP, = a, OP,; = b, OP , = ¢, OP,, = d, and OM =z = x + iy, where
OM represents the vector from an arbitrary origin O to a point M on the center-point
curve. The equation of the center-point'?’ curve is given by

@-a)z-b) _ E-O@z-d) _

—— —— = ¢¥¢ (3.29)
(z—az—b) (z—oE—d
where ¢ = £ P MP,, = £ P ,MP,,. In cartesian coordinates with origin at P,,, this
curve is given in Ref. 16 by the following equation:
(xz + y2)(]'2x - ]1y) + (i]kz - j2k1 - j})xz + (j]kz - jzkl + j3)y2 + 2j4Xy
+ (=) kg + ok, + sk, = jk)x + Gk, + ok — ik, — jk)y =0 (3.30)
where k= x,+x,
ky =yi3+ ¥
ky = X135, F Vi,
ky = X130, = VYo
Ji =Xt x,—k (3.31)

=Yty Tk
J3 = XYy T X003 — Ky
Ja = XX~ VY — Ky

and (x; y,) are the cartesian coordinates of pole P, Equation (3.30) represents a third-
degree algebraic curve, passing through the six poles P, and the six points [T, .
Furthermore, any point M on the center-point curve subtends equal angles, or angles dif-
fering by two right angles, at opposite sides (P,P,) and (P, P,) of a complementary-
. . . ijJ i .

pole quadrilateral, provided the sense of rotation of subtended angles is preserved:

L PMP,= L PMP,... (3.32)
Construction of the Center-Point Curve mg 32 When the four positions of a plane are
known (A,B, i = 1, 2, 3, 4), the poles P[j are constructed first; thereafter, the center-

point curve is found as follows:
A chord Piijk of a circle, center O, radius

R=P_P. /2sin0
ij" jk

(Fig. 3.33) subtends the angle 6 (mod 7) at any point on its circumference. For any value
of 6, —180° < 6 < 180°, two corresponding circles can be drawn following Fig. 3.33,

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2006 The McGraw-Hill Companies. All rights reserved.
Any use is subject to the Terms of Use as given at the website.



KINEMATICS OF MECHANISMS

3.28 MECHANICAL DESIGN FUNDAMENTALS

using as chords the opposite sides PP, and
P,P,, of a complementary-pole quadrilateral;
intersections of such corresponding circles are
points (M) on the center-point curve, provided
Eq. (3.32) is satisfied.

As a check, it is useful to keep in mind the
following angular equalities:

%L AMA,= £ PMP,= £ P,MP,
i ij J i

Also see Ref. 421f, p. 189.
FIG. 3.33 Subtention of equal angles.

Use of the Center-Point Curve. Given four positions of a plane AB, (i = 1, 2, 3, 4)
in a coplanar motion-transfer process, we can mechanize the motion by selecting
points on the center-point curve as fixed pivots.

EXAMPLE®" A stacker conveyor for corrugated boxes is based on the design shown
schematically in Fig. 3.34. The path of C should be as nearly vertical as possible; if A,
A, AC, C,C,C,C, are chosen to suit the specifications, B, should be chosen on the center-
point curve determined from AC,i=1,2,3,4B, is then readily determined by inver-
sion, i.e., by drawing the motion of B, relative to A,C, and locating B, at the center of the
circle thus described by B,, (also see next paragraphs).

Py
T C4
-~

=T T
T 1
y‘ /// /// TC3
- P . 1
Bs - _—— Approximate |
=7 - ! path—7
- &\// vertical path TCZ
e e o I
A,10,1.8) e ’/ ~ '
9 (o o o— Bof7.1, L8] 8)c,112.8,1.8)
Ay B,(4.55,1.8)
/
/
Rol0,0) x ™Power cylinder

FIG. 3.34 Stacker conveyor drive.

3.5.5 The Circle-Point Curve

The circle-point curve is the kinematical inverse of the center-point curve. It is the
locus of all points K in the moving plane whose four corresponding positions lie on
one circle. If the circle-point curve is to be determined for positions i of the plane AB,
Egs. (3.29), (3.30), and (3.31) would r_ema_in unch_anged, except that ij, P, and Pj
would be replaced by the image poles P,.’, P}, and P_;I, respectively.

The center-point curve lies in the frame or reference plane; the circle-point curve
lies in the moving plane. In the above example, point B, is on the circle-point curve
for plane AC in position 1. The example can be solved also by selecting B, on the circle-
point curve in A, C|; B is then the center of the circle through B B,B,B,. A computer
program for the center-point and circle-point curves (also called “Burmester curves”)
is outlined in Refs. 383 and 421f, p. 184.

1
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SPECIAL CASE If the corresponding points A A,A, lie on a straight line, A| must lie on
the circle through P,,P ,P,."; for four corresponding points A|A,A.A, on one straight line,
A, is located at intersection, other than P,,, of circles through P12P13P123 and PP, 4P'24,
respectively. Applied to straight-line guidance in slider-crank and four-bar drives in Ref.
251; see also Refs. 32 and 421f, pp. 491-494.

3.5.6 Five Positions of a Plane (AB,i=1,2,3,4,5)

In order to obtain accurate motions, it is desirable to specify as many positions as pos-
sible; at the same time the design process becomes more involved, and the number of
“solutions” becomes more restricted. Frequently four or five positions are the most
that can be economically prescribed.

Associated with five positions of a plane are four sets of points K (u = 1, 2, 3, 4
and i is the position index as before) whose corresponding five positions lie on one
circle; to each of these circles, moreover, corresponds a center point M. These circle
points K and corresponding center points M, are called “Burmester point pairs.”
These four point pairs may be all real or pairwise imaginary (all real, two-point pairs
real and two point pairs imaginary, or all point pairs imaginary).'?”*>'/ Note the differ-
ence, for historical reasons, between the above definition and that given in Sec. 3.4.6
for infinitesimal motion. The location of the center points, M, can be obtained as the
intersections of two center-point curves, such as m ., and m,,...

A complex-number derivation of their location,lm’“i«% as well as a computer
program for simultaneous determination of the coordinates of both M, and K} is
available'108,127,380,421}'

An algebraic equation for the coordinates (x,, y,) of M is given in Ref. 16 as fol-
lows. Origin at P ,, coordinates of P arex,, v,

B (u — tan %50, )[/,(k, — kyu) — L(e, — e;u)]

12>

Y pu*+ pu+ p,
(3.33)
(u — tan %40 )[I,(k, + k,u) — I,(e, + e u)]
Yu ™ pu*+ pyu+ p,
where tan 440 , = (X355 = X3V, (X 355 T V,3Y03) (3.34)
and u is a root of mut + m® + myu + mu + my =0
wherein my = py(q, + Lpy)
my = py(q, + 2LpIp, + qyp; — gy tan 46,
m, = qp,+ q,p,+ qp,+ L3+ 2pp) — g tan 456, + g, (3.35)
my =gy, + py(q, + 2Ip,) — q, tan 1/2612 + g5
my, =pq,+ Lp) +q,
q,=d\h,— d;h, hy=kl — el (3.36)
q, = d,h,— d,h, hy =k, — e,l,

q, = —d\hy+ dh, — dh, + dhy hy =kl — el

g, =hi+ 1 hy =kl — el
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q, = hi+h3 Py = kye, — kiey
qs = 2(hhy = hyhy) Py = kye, T ke, = kye, — key
dy = X571 X Py = ke, — ke,
dy = X5~ Xy e =d; —x;— Xy
dy = Y5 T ¥as e =dy=x;+xy (3.36)
dy = Yi5~ Yas e3=dy = Y37 Iy
ky=d; = x, = Xy ey =d, =yt yy
ky=dy = x,, % x Iy = x50+ ¥y —
ky=dy =y, = ¥y L=x0,F Viyu—
k,=d,—y,ty, T S o

The Burmester point pairs are discussed in Refs. 16, 67, and 127 and extensions of
the theory in Refs. 382, 400, and 421f, pp. 211-230. It is suggested that, except in spe-
cial cases, their determination warrants programmed computation. 08421/

Use of the Burmester Point Pairs. As in the example of Sec. 3.5.4, the Burmester
point pairs frequently serve as convenient pivot points in the design of linked mecha-
nisms. Thus, in the stacker of Sec. 3.5.4, five positions of C, could have been specified
in order to obtain a more accurately vertical path for C; the choice of locations of B,
and B, would then have been limited to at most two Burmester point pairs (since AjA,
and C,Cy, prescribed, are also Burmester point pairs).

3.5.7 Point-Position Reduction!%:194421f

“Point-position reduction” refers to a construction for simplifying design procedures
involving several positions of a plane. For five positions, graphical methods would
involve the construction of two center-point curves or their equivalent. In point-position
reduction, a fixed-pivot location, for instance, would be chosen so that one or more
poles coincide with it. In the relative motion of the fixed pivot with reference to the
moving plane, therefore, one or more of the corresponding positions coincide, thereby
reducing the problem to four or fewer positions of the pivot point; the center-point
curves, therefore, may not have to be drawn. The reduction in complexity of construc-
tion is accompanied, however, by increased restrictions in the choice of mechanism
proportions. An exhaustive discussion of this useful tool is found in Ref. 159.

3.5.8 CompleX-Number Methodsl()6,123,37l,372,38(),381,42111435

Burmester-point theory has been applied to function generation as well as to path gener-
ation and combined path and function generation.!%%127-380.421f The most general approach
to path and function generation in plane motion utilizes complex numbers. The vector
closure equations are used for each independent loop of the mechanism for every pre-
scribed position and are differentiated once or several times if velocities, accelerations,
and higher rates of change are prescribed. The equations are then solved for the
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I unknown mechanism proportions. This

L3 method has been applied to four-bar path

I3 and function generators!06123127:371.380.384.421f

7, ) (the former with prescribed crank rota-
4

tions), as well as to a variety of other mech-
anisms. The so-called “path-increment”
and “path-increment-ratio” techniques
FIG. 3.35 Mechanism derived from a bar-slider ~ (see below) simplify the mathematics
chain. insofar as this is possible. In addition to
path and function specification, these
methods can take into account prescribed
transmission angles, mechanical advantages, velocity ratios, accelerations, etc., and
combinations of these.
Consider, for instance, a chain of links connected by turning-sliding joints (Fig.
3.35). Each bar slider is represented by the vector z, = re®.- In this case the closure
equation for the position shown, and its derivatives are as follows:

5
Closure: z, = 0
d 3 ! 5

Velocity: EJZI =0 or ,:21 Nz =0
where )\j = (l/rj)(dr]/dt) + i(de/./dt) (t = time)

d 3 5
Acceleration: EJ; Az, =0 or /Zi Az, =0
where = )\j + (l/xj)(d)\j/dt)

Similar equations hold for other positions. After suitable constraints are applied on
the bar-slider chain (i.e., on ry 0) in accordance with the properties of the particular
type of mechanism under consideration, the equations are solved for the z; vectors,
i.e., for the “initial” mechanism configuration.

If the path of a point such as C in Fig. 3.35 (although not necessarily a joint in the
actual mechanism represented by the schematic or “general” chain) is specified for a
number of positions by means of vectors &,, &,, ..., &,, the “path increments” mea-
sured from the initial position are (8}. — 81),j = 2,3, ..., k. Similarly, the “path incre-
ment ratios” are (Sj —0)/(®,—8)),j = 3,4, ..., k. By working with these quantities,
only moving links or their ratios are involved in the computations. The solution of
these equations of synthesis usually involves the prior solution of nonlinear “compati-
bility equations,” obtained from matrix considerations. Additional details are covered
in the above-mentioned references. A number of related computer programs for the
synthesis of linked mechanisms are described in Refs. 129 and 421f. Numerical meth-
ods suitable for such syntheses are described in Ref. 372.

3.6 DESIGN REFINEMENT

After the mechanism is selected and its approximate dimensions determined, it may be
necessary to refine the design by means of relatively small changes in the proportions,
based on more precise design considerations. Equivalent mechanisms and cognates
(see Sec. 3.6.6) may also present improvements.
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3.6.1 Optimization of Proportions for Generating Prescribed Motions with
Minimum Error

Whenever mechanisms possess a limited number of independent dimensions, only a
finite number of independent conditions can be imposed on their motion. Thus, if a
path is to be generated by a point on a linkage (rather than, say, a cam follower), it is
not possible—except in special cases—to generate the curve exactly. A desired path
(or function) and the actual, or generated, path (or function) may coincide at several
points, called “precision points”; between these, the curves differ.

The minimum distance from a point on the ideal path to the actual path is called
the “structural error in path generation.” The “structural error in function generation”
is defined as the error in the ordinate (dependent variable y) for a given value of the
abscissa (independent variable x). Structural errors exist independent of manufacturing
tolerances and elastic deformations and are thus inherent in the design. The combined
effect of these errors should not exceed the maximum tolerable error.

The structural error can be minimized by the application of the fundamental theo-
rem of P. L. Chebyshev!®4? phrased nonrigorously for mechanisms as follows:

If n independent, adjustable proportions (parameters) are involved in the design of
a mechanism, which is to generate a prescribed path or function, then the largest
absolute value of the structural error is minimized when there are n precision points so
spaced that the n + 1 maximum values of the structural error between each pair of
adjacent precision points—as well as between terminals and the nearest precision
points—are numerically equal with successive alterations in sign.

4/ideol or desired
}634 Function

Actual or generated

X
L— Range of —

mechanization

FIG. 3.36 Precision points 1, 2, and 3 and “regions” 01,
12, 23, and 34, in function generation.

In Fig. 3.36 (applied to function generation) the maximum structural error in each
“region,” such as 01, 12, 23, and 34, is shown as €, €,,, €,,, and €,,, respectively,
which represent vertical distances between ideal and generated functions having three
precision points. In general, the mechanism proportions and the structural error will
vary with the choice of precision points. The spacing of precision points which yields
least maximum structural error is called “optimal spacing.” Other definitions and con-

cepts, useful in this connection, are the following:

n-point approximation: Generated path (or function) has n precision points.

nth-order approximation: Limiting case of n-point approximation, as the spacing
between precision points approaches zero. In the limit, one precision point is retained,
at which point, however, the first n — 1 derivatives, or rates of change of the generated
path (or function), have the same values as those of the ideal path (or function).

The following paragraphs apply both to function generation and to planar path gen-
eration, provided (in the latter case) that x is interpreted as the arc length along the
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ideal curve and the structural error €; refers to the distance between generated and
ideal curves.
Chebyshev Spacing.'*> For an n-point approximation to y = f(x), within the range x,
<x<x ., Chebyshev spacing of the n precision points x; is given by

= Tn+l?

X, = %(xo-i- X))~ ‘/z(xnﬂ — X,) €Os {[2/ — Dm]/2n} j=12,..,n
Though not generally optimum for finite ranges, Chebyshev spacing often represents a
good first approximation to optimal spacing.

The process of respacing the precision points, so as to minimize the maximum struc-

tural error, is carried out numerically'?? unless an algebraic solution is feasible.*>#04

Respacing of Precision Points to Reduce Structural Error via Successive
Approximations. Let x{V= xV— x(I, where j = i + 1, and let X" = 1, 2, ..., n)
represent precision-point locations in a first approximation as indicated by the super-
script (1). Let ej“) represent the maximum structural error between points x,(", x", in
the first approximation with terminal values x;, x,,,. Then a second spacmg x; Ty =
x(zJ—x“) is sought for which e(f) values are 1ntended to be closer to optlmum (i.e.,
more nearly equal); it is obtained from

x“ (x

ntl )

2) —
X = (€] S {x /e
i 2 Vi 1S

(3.37)

The value of the exponent m generally lies between 1 and 3. Errors can be minimized
also according to other criteria, for instance, according to least squares.?** Also see
Ref. 404.

Estimate of Least Possible Maximum Structural Error. In the case of an n-point
Chebyshev spacmg in the range x, < x <x, + 1 with maximum structural errors €0 =
i+1;i=0,1,...,n),

= (112n)[€}, + En(nJrl)] + (IUn)le, + e, + -+ €

2 (338

eopt(estimate)

In other spacings different estimates should be used; in the absence of more refined
evaluations, the root-mean-square value of the prevailing errors can be used in the
general case. These estimates may show whether a refinement of precision-point spac-
ing is worthwhile.

Chebyshev Polynomials. Concerning the effects of increasing the number of preci-
sion points or changing the range, some degree of information may be gained from an
examination of the “Chebyshev polynomials.” The Chebyshev polynomial T (z) is that
nth-degree polynomial in ¢ (with leading coefficient unity) which deviates least from
zero within the interval o < ¢ < 3. It can be obtained from the following differential-
equation identity by equating to zero coefficients of like powers of #:

2AP—(a + B)t + aB] T + [21 — (a + BT () — 202T, (1) = 0

where the primes refer to differentiation with respect to . The maximum deviation
from zero, L, is given by

— (OL _B)n/22n71
For the interval —1 <t < 1, for instance,
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T (1) = (1/2""") cos (ncos™" 1) L =1/2""
T()=t1

T,(n=r-"%

Tt =1 — Cax

T()=t—r+%

Chebyshev polynomials can be used directly in algebraic synthesis, provided the
motion and proportions of the mechanism can be suitably expressed in terms of such
polynomials.*?

Adjusting the Dimensions of a Mechanism for Given Respacing of Precision Points.
Once the respacing of the precision points is known, it is possible to recompute the
mechanism dimensions by a linear computation!?2174249.446 provided the changes in the
dimensions are sufficiently small.

Let f(x) = ideal or desired functional relationship.
g(x) - g(x’ p(l) p(]l)’ cee pfllll
= generated functional relationship in terms of mechanism parameters or pro-
portions p ", where p® refers to the jth parameter in the kth approximation.
eD(x) = value of structural erfor at X2 in the first approximation, where x? is a new or
respaced location of a precision point, such that ideally e?(x¥?) = 0 (where

e=f—29.

Then the new values of the parameters p/.(z) can be computed from the equations

n—1 2
@) = > aggi) PO—p)  i=12..n (3.39)
Jj=0

These are n linear equations, one each at the n “precision” points x? in the n
unknowns p'?. The convergence of this procedure depends on the appropriateness of
neglecting higher-order terms in Eq. (3.39); this, in turn, depends on the functional
relationship and the mechanism and cannot in general be predicted. For related inves-
tigations, see Refs. 131 and 184; for respacing via automatic computation and for
accuracy obtainable in four-bar function generators, see Ref. 122, and in geared five-
bar function generators, see Ref. 397.

3.6.2 Tolerances and Precision!7-147-158.174.228.243.482

After the structural error is minimized, the effects of manufacturing errors still remain.

The accuracy of a motion is frequently expressed as a percentage defined as the
maximum output error divided by total output travel (range).

For a general discussion of the various types of errors, see Ref. 482.

Machining errors may cause changes in link dimensions, as well as clearances and
backlash. Correct tolerancing requires the investigation of both. If the errors in link
dimensions are small compared with the link lengths, their effect on displacements,
velocities, and accelerations can be determined by a linear computation, using only
first-order terms.
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The effects of clearances in the joints and of backlash are more complicated and, in
addition to kinematic effects, are likely to affect adversely the dynamic behavior of the
mechanism.'#” The kinematic effect manifests itself as an uncertainty in displace-
ments, velocities, accelerations, etc., which, in the absence of load reversal, can be
computed as though due to a change in link length, equivalent to the clearance or
backlash involved. The dynamic effects of clearances in machinery have been investi-
gated in Ref. 98 to 100.

Since the effect of tolerances will depend on the mechanism and on the “location”
of the tolerance in the mechanism, each tolerance should be specified in accordance
with the magnitude of its effect on the pertinent kinematic behavior.

3.6.3 Harmonic Analysis (see also Sec. 3.9 and bibliography in Ref. 493)

It is sometimes desirable to express the motion of a machine part as a Fourier series in
terms of driving motion, in order to analyze dynamic characteristics and to ensure sat-
isfactory performance at high speeds. Harmonic analysis, for example, is used in com-
puting the inertia forces in slider-crank mechanisms in internal-combustion
engines*>3%7 and also in other mechanisms.!?8:286.289.493

Generally, two types of investigations arise:

1. Determination of the “harmonics” in the motion of a given mechanism as a check
on inertial loads and critical speeds

2. Proportioning to minimize higher harmonics!?®

3.6.4 Transmission Angles (see also Sec. 3.2.10)!34-136.155.467

In mechanisms with varying transmission angles w, the optimum design involves the
minimization of the deviation v of the transmission angle from its ideal value. Such a
design maximizes the force tending to turn the driven link while minimizing frictional
resistance, assuming quasi-static operation.

In plane crank-and-rocker linkages, the minimization of the maximum deviation of
the transmission angle from 90° has been worked out for given rocker swing angle {s
and corresponding crank rotation ¢. In the special case of centric crank-and-rocker
linkages (¢ = 180°) the solution is relatively simple: a®> + b?> = ¢ + d? (where q, b, c,
and d denote the lengths of crank, coupler, rocker, and fixed link, respectively). This
yields sin v = (ab/cd), ., = 90° + v, w . = 90° — v. The solution for the general
case (¢ arbitrary), including additional size constraints, can be found in Refs. 134 to
136, 155, and 371, and depends on the solution of a cubic equation.

3.6.5 Design Charts

To save labor in the design process, charts and atlases are useful when available.
Among these are Refs. 199 and 210 in four-link motion; the VDI-Richtlinien
Duesseldorf (obtainable through Beuth-Vertrieb Gmbh, Berlin), such as 2131, 2132
on the offset turning block and the offset slider crank, and 2125, 2126, 2130, 2136
on the offset slider-crank and crank-and-rocker mechanisms; 2123, 2124 on four-bar
mechanisms; 2137 on the in-line swinging block; and data sheets in the technical
press.

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2006 The McGraw-Hill Companies. All rights reserved.
Any use is subject to the Terms of Use as given at the website.



KINEMATICS OF MECHANISMS

3.36 MECHANICAL DESIGN FUNDAMENTALS

3.6.6 Equivalent and “Substitute” Mechanisms!0!12421s

Kinematic equivalence is explained in Sec. 3.2.12. Ways of obtaining equivalent
mechanisms include (1) pin enlargement, (2) kinematic inversion, (3) use of centrodes,
(4) use of curvature constructions, (5) use of pantograph devices, (6) use of multigen-
eration properties, (7) substitution of tapes, racks, and chains for rigid
links84103.159.189.285 and other ways depending on the inventiveness of the designer.” Of
these, (5) and (6) require additional explanation.

The “pantograph” can be used to reproduce a given motion, unchanged, enlarged,
reduced, or rotated. It is based on “Sylvester’s plagiograph,” shown in Fig. 3.37.

AODC is a parallelogram linkage with point O fixed with two similar triangles ACC|,
DBC, attached as shown. Points B and C | will trace similar curves, altered in the ratio
OC,/OB = AC//AC and rotated relative to each other by an amount equal to the angle a.
The ordinary pantograph is the special case obtained when B, D, C, and C, A, C, are
collinear. It is used in engraving machines and other motion-copying devices.

Roberts’ theorem?3?182:288.347:421f ggates that there are three different but related four-
bar mechanisms generating the same coupler curve (Fig. 3.38): the “original” ABCDE,
the “right cognate” LKGDE, and the “left cognate” LHFAE. Similarly, slider-crank
mechanisms have one cognate each.!$?

FIG. 3.38 Roberts’ theorem. ABEC = AFHE =
FIG. 3.37 Sylvester’s plagiograph or skew pan- AEKG = AALD = AAHC = ABKD = FLG; AFEB,
tograph. EGDC, HLKE are parallelograms.

If the “original” linkage has poor proportions, a cognate may be preferable. When
Grashof’s inequality is obeyed (Sec. 3.9) and the original is a double rocker, the cognates
are crank-and-rocker mechanisms; if the original is a drag link, so are the cognates; if the
original does not obey Grashof’s inequality, neither do the cognates, and all three are either
double rockers or folding linkages. Several well-known straight-line guidance devices
(Watt and Evans mechanisms) are cognates.

Geared five-bar mechanisms (Refs. 95, 119, 120, 347, 372, 391, 397, 421f) may
also be used to generate the coupler curve of a four-bar mechanism, possibly with bet-
ter transmission angles and proportions, as, for instance, in the drive of a deep-draw
press. The gear ratio in this case is 1:1 (Fig. 3.39), where ABCDE is the four-bar link-
age and AFEGD is the five-bar mechanism with links AF and GD geared to each other
by 1:1 gearing. The path of E is identical in both mechanisms.

“Investigation of enumeration of mechanisms based on degree-of-freedom requirements are found in Refs.
106, 159, and 162 to 165 with application to clamping devices, tools, jigs, fixtures, and vise jaws.
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T

FIG. 3.40 Double generation of a cycloidal
path. For the case shown 0,0, and AO, rotate in
the same direction. R,/R, = r,/r, + 15 R =
FIG. 3.39 Four-bar linkage ABCDE and equiva- p(r/ry; R, = p[1 + (r/r,)]. Radius ratios are
lent 1:1 geared five-bar mechanism AFEGD;  considered positive or negative depending on
AFEB and DGEC are parallelograms. whether gearing is internal or external.

In Fig. 3.38 each cognate has one such derived geared five-bar mechanism (as in
Fig. 3.39), thus giving a choice of six different mechanisms for the generation of any
one coupler curve.

Double Generation of Cycloidal Curves.’'>3>38 A given cycloidal motion can be
obtained by two different pairs of rolling circles (Fig. 3.40). Circle 2 rolls on fixed cir-
cle 1 and point A, attached to circle 2, describes a cycloidal curve. If O,, O, are cen-
ters of circles 1 and 2, P their point of contact, and O,0,AB a parallelogram, circle 3,
which is also fixed, has center O, and radius O,T, where T is the intersection of exten-
sions of O,B and AP; circle 4 has center B, radius BT, and rolls on circle 3. If point A
is now rigidly attached to circle 4, its path will be the same as before. Dimensional
relationships are given in the caption of Fig. 3.40. For analysis of cycloidal motions,
see Refs. 385, 386, and 492.

Equivalent mechanisms obtained by multigeneration theory may yield patentable
devices by producing “unexpected” results, which constitutes one criterion of
patentability. In one application, cycloidal path generation has been used in a speed
reducer.*$426495 Another form of “cycloidal equivalence” involves adding an idler gear
to convert from, say, internal to external gearing; applied to resolver mechanism in
Ref. 357.

3.6.7 Computer-Aided Mechanisms Design and Optimization (Refs. 64-66,
78,79, 82, 106, 108, 109, 185, 186, 200, 217, 218, 246, 247, 317, 322-324, 366, 371,
380, 383, 412-414, 421a, 430, 431, 445, 457, 465, 484, 485)

General mechanisms texts with emphasis on computer-aided design include Refs. 106,
186, 323, 421f, 431, 445. Computer codes having both kinematic analysis and synthe-
sis capability in linkage design include KINSYN?!7-218 and LINCAGES.!?® Both codes
also include interactive computer graphics features. Codes which can perform both
kinematic and dynamic analysis for a large class of mechanisms include DRAM and
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ADAMS,04-60457 DYMAC, 32?324 IMP, 430463 kinetoelastodynamic codes,'%#?/ codes for
the sensitivity analysis and optimization of mechanisms with intermittent-motion
elements, 85186200 heuristic codes,’®7%246.247 and many others.52317,322.366.484.485

The variety of computational techniques is as large as the variety of mechanisms.
For specific mechanisms, such as cams and gears, specialized codes are available.

In general, computer codes are capable of analyzing both simple and complex
mechanisms. As far as synthesis is concerned the situation is complicated by the non-
linearity of the motion parameters in many mechanisms and by the impossibility of
limiting most motions to small displacements. For the simpler mechanisms synthesis
codes are available. For more complex mechanisms parameter variation of analysis
codes or heuristic methods are probably the most powerful currently available tools.
The subject remains under intensive development, especially with regard to interactive
computer graphics [for example, CADSPAM, computer-aided design of spatial mech-
anisms (Ref. 421a)].

3.6.8 Balancing of Linkages

At high speeds the inertia forces associated with the moving links cause shaking
forces and moments to be transmitted to the frame. Balancing can reduce or eliminate
these. An introduction is found in Ref. 421f. (See also Refs. to BAL 25-30, 191, 214,
219, 258-260, 379a, 452, 452a, 452b, 459, 460.)

3.6.9 Kinetoelastodynamics of Linkage Mechanisms

Load and inertia forces may cause cyclic link deformations at high speeds, which
change the motion of the mechanism and cannot be neglected. An introduction and copi-
ous list of references are found in Ref. 421f. (See also Refs. 53, 107, 202, 416, 417.)

3.7 THREE-DIMENSIONAL MECHANISMS 2135421
(Sec. 3.9)

Three-dimensional mechanisms are also called “spatial mechanisms.” Points on these
mechanisms move on three-dimensional curves. The basic three-dimensional mecha-
nisms are the “spherical four-bar mechanisms” (Fig. 3.41) and the “offset” or “spatial
four-bar mechanism” (Fig. 3.42).

The spherical four-bar mechanism of Fig. 3.41 consists of links AB, BC, CD, and
DA, each on a great circle of the sphere with center O; turning joints at A, B, C, and D,
whose axes intersect at O; lengths of links measured by great-circle arcs or angles «;
subtended at O. Input 6,, output 8,; single degree of freedom, although 3f, = 4 (see
Sec. 3.2.2).

Figure 3.42 shows a spatial four-bar mechanism; turning joint at D, turn-slide (also
called cylindrical) joints at B, C, and D; a,; denote minimum distances between axes of
joints; input 6, at D; output at A consists of translation s and rotation 6,; Xf, = 7; free-
dom, F = 1.

Three-dimensional mechanisms used in practice are usually special cases of the
above two mechanisms. Among these are Hooke’s joint (a spherical four-bar, with o, =
ay; = a, = 90°% 90° < o, < 180°), the wobble plates (o, < 90°, o, = ay = a, = 90°),
the space crank,** the spherical slider crank,?** and other mechanisms, whose analysis
is outlined in Sec. 3.9.
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FIG. 3.41 Spherical four-bar mechanism. FIG. 3.42 Offset or spatial four-bar mechanism.

The analysis and synthesis of spatial mechanisms require special mathematical
tools to reduce their complexity. The analysis of displacements, velocities, and accel-
erations of the general spatial chain (Fig. 3.42) is conveniently accomplished with the
aid of dual vectors,*?!'* numbers, matrices, quaternions, tensors, and Cayley-Klein
parameters.3>874% The spherical four-bar (Fig. 3.41) can be analyzed the same way, or
by spherical trigonometry.>* A computer program by J. Denavit and R. S.
Hartenberg'?® is available for the analysis and synthesis of a spatial four-link mecha-
nism whose terminal axes are nonparallel and nonintersecting, and whose two moving
pivots are ball joints. See also Ref. 474 for additional spatial computer programs. For
the simpler problems, for verification of computations and for visualization, graphical
layouts are useful?!:33:36.38.462

Applications of three-dimensional mechanisms involve these motions:

1. Combined translation and rotation (e.g., door openers to lift and slide simultaneously?)

2. Compound motions, such as in paint shakers, mixers, dough-kneading machines
and fi]ing8,35,36,3()4

3. Motions in shaft couplings, such as universal and constant-velocity joints*%2!:33.262
(see Sec. 3.9)

4. Motions around corners and in limited space, such as in aircraft, certain wobble-
plate engines, and lawn mowers®0-310:332

5. Complex motions, such as in aircraft landing gear, remote-control handling
devices,”"?’% and pick-and-place devices in automatic assembly machines

When the motion is constrained (F = 1), but Xf, < 7 (such as in the mechanism
shown in Fig. 3.41), any elastic deformation will tend to cause binding. This is not the
case when Xf, = 7, as in Fig. 3.42, for instance. Under light-load, low-speed condi-
tions, however, the former may represent no handicap.!? The “degenerate” cases, usu-
ally associated with parallel or intersecting axes, are discussed more fully in Refs. 3,
10, 143, and 490.
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In the analysis of displacements and velocities, extensions of the ideas used in
plane kinematic analysis have led to the notions of the “instantaneous screw axis,”®
valid for displacements and velocities; to spatial Euler-Savary equations; and to con-
cepts involving line geometry.??*

Care must be taken in designing spatial mechanisms to avoid binding and low
mechanical advantages.

3.8 CLASSIFICATION AND SELECTION
OF MECHANISMS

In this section, mechanisms and their components are grouped into three categories:

A. Basic mechanism components, such as those adapted for latching, fastening, etc.
B. Basic mechanisms: the building blocks in most mechanism complexes.

C. Groups or assemblies of mechanisms, characterized by one or more displacement-
time schedules, sequencing, interlocks, etc.; these consist of combinations from
categories A and B and constitute important mechanism units or independent por-
tions of entire machines.

Among the major collections of mechanisms and mechanical movements are the
following:

1M. Barber, T. W.: “The Engineer’s Sketch-Book,” Chemical Publishing Company,
Inc., New York, 1940.

2M. Beggs, J. S.: “Mechanism,” McGraw-Hill Book Company, Inc., New York, 1955.

3M. Hain, K.: “Die Feinwerktechnik,” Fachbuch-Verlag, Dr. Pfanneberg & Co.,
Giessen, Germany, 1953.

4M. “Ingenious Mechanisms for Designers and Inventors,” vols. 1-2, F. D. Jones, ed.:
vol. 3, H. L. Horton, ed.; The Industrial Press, New York, 1930-1951.

SM. Rauh, K.: Praktische Getriebelehre,” Springer-Verlag OHG, Berlin, vol. I, 1951;
vol. I, 1954.

There are, in addition, numerous others, as well as more special compilations, the
vast amount of information in the technical press, the AWF publications,*® and (as a
useful reference in depth), the Engineering Index. For some mechanisms, especially
the more elementary types involving fewer than six links, a systematic enumeration of
kinematic chains based on degrees of freedom may be worthwhile,'9>-165421¢ particu-
larly if questions of patentability are involved. Mechanisms are derived from the kine-
matic chains by holding one link fixed and possibly by using equivalent and substitute
mechanisms (Sec. 3.6.6). The present state of the art is summarized in Ref. 159.

In the following list of mechanisms and components, each item is classified according to
category (A, B, or C) and is accompanied by references, denoting one or more of the above
five sources, or those at the end of this chapter. In using this listing, it is to be remembered
that a mechanism used in one application may frequently be employed in a completely dif-
ferent one, and sometimes combinations of several mechanisms may be useful.

The categories A, B, C, or their combinations are approximate in some cases, since
it is often difficult to determine a precise classification.

Adjustments, fine (A, IM)(A, 2M)(A, 3M)
Adjustments, to a moving mechanism (A, 2M)(AB, 1M); see also Transfer, power
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Airplane instruments and linkages (C, 3M)**?

Analog computing mechanisms;*% see also Computing mechanisms
Anchoring devices (A, 1M)

Automatic machinery, special-purpose;'¢! automatic handling
Ball bearings, guides and slides (A, 3M)

Ball-and-socket joints (A, 1M); see also Joints

363

Band drives (B, 3M); see also Tapes

Bearings (A, 3M)(A, 1M); jewel;*® for oscillating motion®®

Belt gearing (B, 1M)

Bolts (A, 1M)

Brakes (B, 1M)

Business machines, bookkeeping and records (C, 3M)

Calculating devices (C, 3M);?"7 see also Mathematical instruments
Cameras (C, 3M); see also Photographic devices

Cam-link mechanisms (BC, IM)(BC, 5M)*!

Cams and cam drives (BC, 4M)(BC, SM)(BC, 1M)*7

Carriages and cars (BC, 1M)

Centrifugal devices (BC, 1M)

Chain drives (B, IM)(B, 5M)>%

Chucks, clamps, grips, holders (A, 1M)

Circular-motion devices (B, 1M)

Clock mechanisms;'® see also Escapements (Ref. 106 and 421f, pp. 37-39)
Clutches, overrunning (BC, IM)(C, 4M); see also Couplings and clutches
Computing mechanisms (BC, 5M)30271,338.446

Couplings and clutches (B, 1IM)(B, 3M)(B, 5M);!3-140.225.201.336 gee also Joints
Covers and doors (A, 1M)

Cranes (AC, 1IM)77

Crank and eccentric gear devices (BC, 1M)

Crushing and grinding devices (BC, 1M)

Curve-drawing devices (BC, 1M); see also Writing instruments and Mathematical
instruments

Cushioning devices (AC, 1M)

Cutting devices (A, 1M)32-35

Derailleurs or deraillers (see Speed-changing mechanisms) (Refs. 106 and 421f; pp. 27)
Detents (A, 3M)

Differential motions (C, 1IM)(C, 4M)'88

Differentials (B, SM)*

Dovetail slides (A, 3M)

Drilling and boring devices (AC, 1M)

Driving mechanisms for reciprocating parts (C, 3M)

Duplicating and copying devices (C, 3M)
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Dwell linkages (C, 4M)

Ejecting mechanisms for power presses (C, 4M)

Elliptic motions (B, 1M)

Energy storage, instruments and mechanisms involving*3
Energy transfer mechanism, special-purpose®®’

Engines, rotary (BC, 1M)

Engines, types of (C, 1M)

Escapements (B, 2M); see also Ratchets and Clock mechanisms
Expansion and contraction devices (AC, 1M)
Fasteners?#423

Feed gears (BC, 1M)

Feeding, magazine and attachments (C, 4M)!7

Feeding mechanisms, automatic (C, 4M)(C, SM)
Filtering devices (AB, 1M)>

Flexure pivots!03:141:269

Flight-control linkages3®®

Four-bar chains, mechanisms and devices (B, 5M)!06.112421f
Frames, machine (A, 1M)

Friction gearing (BC, 1M)

Fuses (see Escapements)

Gears (B, 3M)(B, 1M)

Gear mechanisms (BC, 1M)!%

Genevas; see Intermittent motions

Geodetic instruments (C, 3M)

Governing and speed-regulating devices (BC, 1M)*¢!
Guidance, devices for (BC, SM)

Guides (A, IM)(A, 3M)

Handles (A, 1M)

Harmonic drives'?!

High-speed design;*’ special application’*

Hinges (A, 1M); see also Joints

Hooks (A, IM)

Hoppers, for automatic machinery (C, 4M), and hopper-feeding devices?3+233:236:421f
Hydraulic converters (BC, 1M)

Hydraulic and link devices®?-2092168.337

Hydraulic transmissions (C, 4M)

Impact devices (BC, 1M)

Indexing mechanisms (B, 2M); see also Sec. 3.9 and Intermittent motions
Indicating devices (AC, 1M); speed (C, 1M)

Injectors, jets, nozzles (A, 1M)

Integrators, mechanical®*®
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Interlocks (C, 4M)
Intermittent motions, general;*3374%8 gee also Sec. 3.9
Intermittent motions from gears and cams (C, 4M)*°

Intermittent motions, geneva types (BC, 4M)(BC, 5M);?!1:357 see also Indexing
mechanisms

Intermittent motions from ratchet gearing (C, 1IM)(C, 4M)
Joints, all types (A, 1M);?% see also Couplings and clutches and Hinges
Joints, ball-and-socket®

Joints, to couple two sliding members (B, 2M)

Joints, intersecting shafts (B, 2M)

Joints, parallel shafts (B, 2M)

Joints, screwed or bolted (A, 3M)

Joints, skew shafts (B, 2M)

Joints, soldered, welded, riveted (A, 3M)

Joints, special-purpose, three-dimensional®’?

Keys (A, 1M)

Knife edges (A, 3M)!#!

Landing gear, aircraft’’

Levers (A, IM)

Limit switches**®

Link mechanisms (BC, 5M)

Links and connecting rods (A, 1M)

Locking devices (A, IM)(A, 3M)(A, 5M)

Lubrication devices (A, 1M)

Machine shop, measuring devices (C, 3M)

Mathematical instruments (C, 3M); see also Curve-drawing devices and Calculating
devices

Measuring devices (AC, 1M)

Mechanical advantage, mechanisms with high value of (BC, 1M)
Mechanisms, accurate;*$? general?'96153159,176.180.193.263,278
Medical instruments (C, 3M)

Meteorological instruments (C, 3M)

Miscellaneous mechanical movements (BC, SM)(C, 4M)
Mixing devices (A, 1M)

Models, kinematic, construction of>!!83

Noncircular gearing (Sec. 3.9)

Optical instruments (C, 3M)

Oscillating motions (B, 2M)

Overload-relief mechanisms (C, 4M)

Packaging techniques, special-purpose!®’

Packings (A, 1M)
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Photographic devices (C, 3M);¥7847948¢ gee also Cameras
Piping (A, 1M)

Pivots (A, 1M)

Pneumatic devices®’

Press fits (A, 3M)

Pressure-applying devices (AB, 1M)

Prosthetic devices3!!:344.345

Pulleys (AB, 1M)

Pumping devices (BC, 1M)

Pyrotechnic devices (C, 3M)

Quick-return motions (BC, 1M)(C, 4M)

Raising and lowering, including hydraulics (BC, 1M)8-340
Ratchets, detents, latches (AB, 2M)(B, 5M);'8362468 gee also Escapements
Ratchet motions (BC, 1M)*8

Reciprocating mechanisms (BC, IM)(B, 2M)(BC, 4M)

f;55,203

Recording mechanisms, illustrations o recording systems?%®

1;48,33 1,495 generaISOS

84,325,458

Reducers, speed; cycloida
Releasing devices and circuit breakers

20 qualitative description3®*

Remote-handling robots;
Reversing mechanisms, general (BC, 1IM)(C, 4M)
Reversing mechanisms for rotating parts (BC, 1IM)(C, 4M)
Robots and manipulators (See Sec. 5.9.10)*?!

Rope drives (BC, 1M)

Safety devices, automatic (A, 1M)(C, 4M)?048!

Screening and sifting (A, 1M)

Screw mechanisms (BC, 1M) (See Ref. 468, no. 6071)
Screws (B, SM)

Seals, hermetic;*® O-ring;?* with gaskets;*¢!13:34 multistage*??
Self-adjusting links and slides (C, 4M)

Separating and concentrating devices (BC, 1M)

Sewing machines (C, 3M)

Shafts (A, IM)(A, 3M); flexible 198241

Ship instruments (C, 3M)

Slider-crank mechanisms (B, 5M)

Slides (A, IM)(A, 3M)

Snap actions (A, 2M)

Sound, devices using (B, 1M)

Spacecraft, mechanical design of*’

Spanners (A, 1M)

Spatial body guidance (Refs. 421c¢, 421d, 421e, 421f)
Spatial function generators with higher pairs (Ref. 421b)
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Speed-changing mechanisms (C, 4M); also see Transmissions
Spindles and centers (A, 1M)

Springs (A, IM)(A, 3M); devices;?!*** fastening of*#?

Springs and mechanisms (BC, SM)

Steering mechanisms (BC, 5M)234447:495

Stop mechanisms (C, 4M)

Stops (A, 2M)**

Straight-line motions, guides, parallel motions and devices (B, IM)(BC,
4M), 72150157476 e 3.9

Struts and ties (A, 1M)

Substitute mechanisms!!24212

Swivels (A, IM)

Tape drives and devices (B, 3M)(B, 5M)?!-18?

Threads?#?

Three-dimensional drives;>33%* Sec. 3.9
Time-measuring devices (C, 3M); timers?’*
Toggles!38144.275:427.498

Torsion devices'#!

Toys, mechanisms used in®'?

Tracks and rails (A, 1M)

Transducers (AB, 2M)(C, 3M)!%70.105477
Transfer, of parts, or station advance (B, 2M)
Transfer, power to moving mechanisms (AB, 2M)

Transmissions and speed changers (BC, 5M);*7437 see also Variable mechanical
advantage and Speed-changing mechanisms

Transmissions, special (C, 4M)'7

Tripping mechanisms (C, 4M)

Typewriting devices (C, 3M)192:266

Universal joints?! 262264379443
Valve gear (BC, 1M)

Valves (A, 1M); design of nonlinear33>374

Variable mechanical advantage and power devices (A, 1M);208:441:499 gee also
Transmissions and speed changers

Washing devices (A, 1M)

Wedge devices 